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approximation. The tetragonal shear elastic constant C′ takes a very small value in the austenitic phase,
indicating the elastic instability results in a phase transition to martensitic structure. Isotropic mechanical
properties such as bulk modulus, shear modulus, Young’s modulus and Poisson’s ratio are predicted. The
trend of the Debye temperatures calculated for three structures of Ni2MnGa is comparable with that of
the experiment.
agnetic shape memory alloy
lastic constants
ebye temperature

. Introduction

Magnetic shape memory alloys (MSMAs) differ from tradi-
ional, thermally activated SMAs in that they are characterized by
trong magnetoelastic coupling. The Heusler-type metals, such as
i–Mn–X (X: Al, Ga, In, Sn, Sb), undergo martensitic transforma-

ions that are sensitive to alloy composition, external pressure,
nd applied magnetic field. Certain compositions display unique
tructural responses to external magnetic fields, undergoing either
agnetic twin reorientation or field-induced phase transfor-
ations that lead to a macroscopic shape memory effect. In
i–Mn–Ga, this effect generates recoverable strains that are an
rder-of-magnitude larger than those associated with the most
ommon commercial magnetostrictors [1]. Since this discovery,
n-based Heusler compounds have been heavily studied, both

hrough experimental probing of structure-property relationships
nd theoretical modeling of the underlying mechanisms. Especially,
i–Mn–Ga magnetic shape memory alloys serve as a reference sys-

em for all fundamental and applied studies related to magnetic
hape memory (MSM) technology due to their unique magneto-
echanical properties. They can be used for development of

ensors and actuators with rather high frequency compared to tem-
erature driven conventional shape memory alloys and have larger
hape changes than ordinary magnetostrictive materials. To be

ore specific, for instance Terfonel-D alloys exhibit magnetostric-

ive strains up to 0.17% [2]. In contrast, the structural deformation
n Ni2MnGa can reach about 10% under moderate magnetic fields
n the order of 1 T [3].

∗ Corresponding author. Tel.: +90 258 2963587; fax: +90 258 2963535.
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925-8388/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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MSM effect in Ni2MnGa is caused by structural transformation
from a higher symmetry cubic L21 (austenite) structure to a variety
of different lower symmetry structures (martensite) upon cooling.
Depending mostly on the composition, the martensitic structure
is characterized by the tetragonal 5M modulated structure with
c/a ∼= 0.94, the orthorhombic 7M structure with c/a ∼= 0.9, and the
nonmodulated (NM) tetragonal structure with c/a ∼= 1.2 [4]. The
crystal structure of martensite is an important factor that deter-
mines the maximal magnetic field induced strain (MFIS) value
described as 1 − c/a. The structural deformation in the 5M modu-
lated phase can reach 6% [5,6], while much larger (up to 10%) MFIS
has been observed in 7M martensite [3]. However, NM tetragonal
martensite does not exhibit any MSM behavior due to the appear-
ance of high twinning stresses (approximately 6–18 MPa in this
phase) [7].

Numerous studies aiming to understand the physical mech-
anism governing the martensitic phase transition have been
performed in recent years. It has been reported that the stability
of structural phases in Ni–Mn–Ga can be provided by the average
change in both the valence electrons per atom (e/a) and tetragonal-
ity ratio (c/a) with composition as well as the martensitic transition
temperature [8–14]. These studies suggest that, at low e/a (<7.7)
the 5M phase exists, 7M structure is observed at the interme-
diate e/a, and the structure is tetragonal NM at high e/a (>7.7).
Moreover, it has been estimated that the martensitic transition
temperature increases with the e/a ratio. However, the effect of lat-
tice dynamics on the lattice instability resulting in large MFIS has

not yet been investigated enough [9]. Enkovaara et al. [15] predicted
the phase transition temperature (TM ∼= 175 K) from austenite to
martensite with c/a = 1.27 by calculating the vibrational free energy
within the Debye approximation. More recently, Uijttewaal et al.
[16] determined the free energies of the austenite, the modulated

dx.doi.org/10.1016/j.jallcom.2010.08.039
http://www.sciencedirect.com/science/journal/09258388
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Table 1
Applied strains and corresponding strain energy densities for austenitic, NM and 5M martensitic structures. Unlisted compounds of strain are taken as zero for each case.

Phase Strain Parameters �E/V0

Austenite C1 ε1 = ε2 = ε3 = ı 3
2 (C11 + 2C12)ı2

C2 ε1 = ı, ε2 = − ı, ε3 = ı2/(1 − ı2) (C11 − C12)ı2 + O(ı4)
C3 ε3 = ı2/(1 − ı2), ε6 = ı 2C44ı2 + O(ı4)

Martensite NM T1 ε1 = ı2/(1 − ı2), ε4 = ı 2C44ı2 + O(ı4)
T2 ε3 = ı2/(1 − ı2), ε6 = ı 2C66ı2 + O(ı4)
T3 ε1 = ı, ε2 = − ı, ε3 = ı2/(1 − ı2) (C11 − C12)ı2 + O(ı4)
T4 ε1 = ı, ε2 = ı2/(1 − ı2), ε3 = − ı (C11−2C13+C33)

2 ı2 + O(ı4)
T5 ε1 = ı, ε2 = ı, ε3 = ı (C11 + C12 + 2C13 + C33/2)ı2 + O(ı4)
T6 ε3 = ı C33

2 ı2

Martensite 5M O1 ε1 = ı C11
2 ı2

O2 ε2 = ı C22
2 ı2

O3 ε3 = ı C33
2 ı2

O4 ε1 = ı2/(1 − ı2), ε4 = ı 2C44ı2 + O(ı4)

O5 ε2 = ı2/(1 − ı2), ε5 = ı 2C55ı2 + O(ı4)

O6 ε3 = ı2/(1 − ı2), ε6 = ı 2C66ı2 + O(ı4)

1 = −
1 = ı,

1 = ı2
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remartensite and the NM martensite of Ni2MnGa by using DFT
nd further including contributions from the fixed-spin moment
agnons to reveal the complete phase sequence between the three

tructures as a function of temperature. The role of the vibrational
nd electronic contribution of the free energy to lattice instability
as also been discussed by Chernenko et al. [17] from the results
f the low-temperature specific heat measurement for Ni–Mn–Ga
lloys.

Experimental studies show that martensitic transformation is
haracterized by the coupling of the soft phonon modes and
ronounced softening of the shear modulus C′ = 1/2(C11 − C12) of
he parent phase [8,18–20]. Inspired by these observations, Hu
t al. [21] recently calculated the composition dependent elas-
ic modulus for off-stoichiometric L21-Ni2MnGa by investigating
he correlation between elastic modulus and martensitic transi-
ion temperature or e/a ratio by constructing stable cite occupancy.
nfortunately, the behavior of elastic properties of martensite

tructure is still insufficient in the literature. In our previous study
22], we predicted the elastic constants for both cubic L21 and NM
etragonal martensitic structure of Ni2MnGa using the potential
ith large number of valence electrons. However, the elastic mod-
lus for 5M modulated tetragonal structure remains unknown.

We are particularly interested in the calculation of the elas-
ic constants for Ni2MnGa in this study, since the determination
f elastic constants is essential in designing of almost all applica-
ions of MSMAs. The knowledge of full anisotropic elastic constants
rovide the basis of the magneto-mechanical coupling, in addition
o supplying information on strength of the materials, mechani-
al stability, phase transitions, and the anisotropic character of the
onding. The elastic properties are also used to determine measur-
ble physical and thermodynamical properties, e.g. – transverse
nd longitudinal – speeds of sound which in turn may be used to
stimate the Debye temperature.

We have performed spin-polarized total energy calculations
y the use of first-principles methods based on DFT with the
im of developing microscopic understanding of MSM behavior of
i2MnGa. This paper is devoted to the study of mechanical prop-

rties of Ni2MnGa in both austenitic and martensitic structures. To
he best of our knowledge, this work presents the elastic constans
f Ni2MnGa in the structure of 5M martensite for the first time. We
ave also re-calculated elastic constants for cubic and NM struc-
ures by using the potential with e/a = 7.5. The elastic constants
ı, ε2 = ı2/(1 − ı2), ε3 = ı 1
2 (C11 − 2C13 + C33)ı2 + O(ı4)

ε2 = − ı, ε3 = ı2/(1 − ı2) 1
2 (C11 − 2C12 + C22)ı2 + O(ı4)

/(1 − ı2), ε2 = − ı, ε3 = ı 1
2 (C22 − 2C23 + C33)ı2 + O(ı4)

are predicted by straining the cubic L21, 5M pseudo-tetragonal and
NM tetragonal martensitic structures. Because of the special sig-
nificance of the isotropic bulk modulus, shear modulus, Young’s
modulus and Poisson’s ratio for technological applications, we have
also calculated these quantities from the elastic constants. The
Debye temperatures of Ni2MnGa are estimated from the average
sound velocity.

2. Computational method

Spin-polarized total energy calculations have been performed within the frame-
work of the DFT by using the Vienna ab initio simulation package (VASP) program
[23]. We have used the pseudopotential with 3p63d84s2 for Ni, 3p63d54s2 for Mn,
and 3d104s24p1 for Ga as the valence configurations to calculate the structural
parameters of cubic austenitic, NM and 5M martensitic phases, and also elastic con-
stants of cubic austenitic and NM martensitic phases of stoichiometric Ni2MnGa in
our previous work [22]. The computational method for structural properties is given
in detail in the same study [22] and will not be repeated here. We should note that, in
this study the valence electronic configurations for Ni and Mn are changed to 3d84s2

and 3d54s2 respectively, while keeping Ga valence configuration as 3d104s24p1. This
offers a shorter run time and utilizes less memory than hard-pseudopotential used
in the previous study; it additionally enables efficient calculation of the elastic con-
stants of modulated structures. We have checked the effect of the number of valence
electrons on the structural parameters and elastic constants by repeating the cal-
culations for only austenitic phase for two potentials, and we found at most 3%
difference. Hence, we have taken the structural parameters obtained in our previ-
ous study [22] and calculated the elastic constants for three phases by using the
specified valence configurations above. Note that the e/a = 7.5 value results from
accounting the 3d electrons of Ga in the core rather than valence due to their small
contribution of Ga 3d electrons to the cohesion.

There are two methods in calculating the elastic constants from first principles:
one is related to the analysis of the calculated total energy of a crystal as a function of
applied strain. The second one is based on the analysis of changes in the calculated
stress values arising from variation in the strain. In our calculation, we choose the
first method to predict the elastic constants. For the deformation of a crystal in
a linear elastic manner at small strain, the energy of the strained system can be
expressed by a Taylor series expansion as:

E(V, ε) = E(V0, 0) + V0

6∑
i=1

�iεi + V0

2

6∑
i,j=1

Cijεiεj + O(ε3), (1)
where ε and � are the strain and stress tensors, respectively. V0 is the volume of
the unstrained lattice, E(V0, 0) is the corresponding total energy, and Cij are the
elastic constants. The elastic constants are identified as proportional to the second
order coefficient in a polynomial fit of the total energy as a function of the distortion
parameter.
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. Results and discussion

The elastic constants for three phases of Ni2MnGa considered
n this work are calculated for the minimized crystal structure
btained from our previous study [22]. The three independent elas-
ic constants for cubic phases, the six for NM martensitic phase,
nd the nine for 5M martensitic phase are determined by imposing
hree, six and nine different deformations, respectively, on the equi-
ibrium strain free unit cell. The components of each strain tensor
a 6-vector in Voigt notation) and the corresponding expressions
or the strain energy densities are given in Table 1. For each lattice
tructure of Ni2MnGa studied, we strained the lattice by varying the
train parameter, ı, from −0.03 to 0.03 in steps of 0.01 to obtain
he total minimum energies at these strains. Fig. 1a–c illustrates
he total energy as a function of strain for the three distortions, the
ix distortions, and nine distortions for cubic, NM and 5M struc-
ures, respectively. The lines in the figures represent the third order
olynomial fit to the energy versus strain curve. Then, the elastic
onstants are extracted from the second order coefficient of this fit.

A cubic crystal has three independent elastic moduli obtained
rom the bulk modulus B = (C11 + 2C12)/3 and two shear moduli
f C11–C12 and C44. For the calculation of the bulk modulus, we
onsider cubic strain tensor of C1 shown in Table 1 with energy
hange �E = (3/2)V0(C11 + C12)ı2. The shear moduli of C11–C12 and
44 are obtained by applying orthorhombic (C2) and monoclinic
C3) volume conserving strains, respectively. The results for the
ulk modulus, the elastic stiffness constants Cij, and the elastic com-
liances Sij of the austenitic phase are presented in Table 3. The
omponents of Sij are calculated from the Cij using the following
elations:

44 = 1
C44

, (2)

11 − S12 = 1
C11 − C12

, (3)

11 + S12 = C11

(C11 − C12)(2C12 + C11)
. (4)

They are in agreement with the experimental elastic con-
tants of Ni2MnGa in the L21 structure obtained by ultrasonic
easurements determined between room temperature and the

ntermediate pre-martensitic phase transition temperature [18,24]
nd other theoretical calculations [21,25]. While the accuracy of
he bulk modulus calculated for cubic phase, showing a deviation
f 6.7% from the experiment performed by Worgull et al. [24] and
6% from the experiment carried out by Manosa et al. [18], is com-
arable to that of the other calculations [21,25]. Our value for C′,
etragonal shear constant, found as 5.5 GPa, compares well with
he experimental values for L21 structure obtained by ultrasonic

easurements ranging between 4.5 GPa [24] and 22 GPa [18].
We applied the six strains listed in Table 1 in order to deter-

ine the elastic constants of martensitic NM tetragonal structure
f Ni2MnGa. The expression for corresponding strain energy den-
ities are also given in the same table. The first four strains (T1–T4)
n Table 1 are selected to be volume conserving to minimize the
hange in the basis set related with the applied strain. However, the
ast one yielding C33 is accompanied by a volume change, but pre-
erves the symmetry of the L21 lattice. The strains T1, T2 and T6 give
irectly the C44, C66, C33, respectively. The remaining elastic con-
tants of C11, C12, and C13 are obtained from the energy expressions
esulted from the distortion matrices of T3, T4, and T5. The T5 dis-

ortion induced by hydrostatic stress yields the expression for bulk

odulus as 9B/2 = C11 + C12 + 2C13 + C33/2, resulting in B = 158 GPa.
he elastic constants of C11, C12, C13, C33, C44 and C66 are found as
52, 74, 144, 194, 100, and 55 GPa, respectively, as shown in Table 2.
isted also in the same table are the compliances Sij for tetragonal Ta
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S

tic stiffness coefficients for both austenitic and martensitic phases
ig. 1. Total energy as a function of strain (ı) for Ni2MnGa in the structures of (a)
ubic L21, (b) tetragonal NM martensite, and (c) 5M martensite. The circles represent
he calculated values, the solid line is the polynomial fit.

tructure obtained from the following relations:

C33

11 + S12 =

C
, (5)

11 − S12 = 1
C11 − C12

, (6)
and Compounds 508 (2010) 177–183

S13 = −C13

C
, (7)

S33 = C11 + C12

C
, (8)

S44 = 1
C44

, (9)

S66 = 1
C66

, (10)

where C = (C11 + C12)C33 − 2C2
13.

In Table 2, we also present the elastic constants of marten-
sitic 5M modulated structure of L21. The stability of this structure
is achieved from the orthorhombic supercell of 40 atoms formed
by five tetragonal crystallographic unit cells. Hence, we need nine
different strains to determine nine independent elastic constants.
The distortions used for 5M modulated structures and the corre-
sponding strain energy densities are described in the last row of
Table 1. The first three elastic constants of C11, C22, and C33 are
obtained by means of deformations (O1, O2, O3) of the lattice
involving the orthorhombic symmetry. The three different vol-
ume conserving monoclinic shear distortions of O4, O5, and O6 are
employed in determining the shear elastic constants of C44, C55,
and C66, respectively. The remaining elastic constants of C12, C13,
and C23 are calculated from a combination of three volume con-
serving orthorhombic deformations (O7, O8, and O9). Table 2 also
displays the results for the elastic stiffness constants, as well as the
compliances of orthorhombic structure. The relations between the
stiffness and compliance constants for the orthorhombic phase are
given as:

S11 = C23
2 − C22C33

C
(11)

S12 = C12C33 − C13C23

C
(12)

S13 = C13C22 − C12C23

C
, (13)

S22 = C13
2 − C11C33

C
, (14)

S23 = C11C23 − C12C13

C
, (15)

S33 = C12
2 − C11C22

C
, (16)

S44 = 1
C44

, (17)

S55 = 1
C55

, (18)

S66 = 1
C66

, (19)

where C = C13
2C22 − 2C12C13C23 + C11C23

2 + C12
2C33 − C11C22C33.

There are not any measurements or any other theoretical stud-
ies for all of the elastic constants for both NM and 5M martensitic
structures of Ni2MnGa alloy to compare with our results. The elas-
shown in Table 2 obey the generalized elastic stability criteria [26]
for cubic, tetragonal and orthorhombic crystals. This indicates that
L21, 5M and NM structures are mechanically stable. Moreover,
these stability conditions lead to some restrictions on the magni-
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ude of bulk modulus. They can be written as:

C12 < Bo < C11,

1
3

(C12 + 2C13) < Bo <
1
3

(C11 + 2C33),

1
3

(C12 + C13 + C23) < Bo <
1
3

(C11 + C22 + C33)

(20)

or cubic, tetragonal and orthorhombic structures, respectively. The
ulk modulus found as 155.7, 158.0 and 153.2 GPa for austenitic,
M and 5M martensitic structures satisfies the restrictions given

n Eq. (20). We obtain a significantly low value for the tetrag-
nal shear constant C′ of the parent phase. This is 16 and 19
imes smaller than the values obtain for NM and 5M marten-
itic phases. This small value is significant in understanding the
bserved large deformation upon transition. Calculations indicate
hat only a small decrease in the shear elastic constant cause phase
ransition. The ratio of two shear constants C44/C′ can be used as an
lastic anisotropy factor for cubic crystals. We calculate it as 17.6,
hich is in good agreement with the values of the experiments

anging between 5 and 23 [18,24]. This important high value of the
lastic anisotropy is resulted from the remarkable softening of C′ at
he phase transition.

Earlier studies show that the first martensite transition on cool-
ng depends on the composition, and L21 structure favors phase
ransition into the martensite in the order of 5M, 7M and NM struc-
ures upon cooling [4,14,27]. According to X-ray diffraction data
11], only the NM phase exist for e/a > 7.71 and TM > 353 K while
ayered phases (5M and 7M) are observed at lower values of e/a
nd TM. In this sense, TM and e/a of NM structure are larger than
hose of 7M and 5M structures. As seen from Table 2, when the
hase transformation from austenite to martensite occurs, tetrag-
nal shear constant C′ drastically increases, but C44 monotonically
ecreases. While the martensitic transformation from 5M to NM
through 7M) in which e/a and TM rise takes place, the C′ decreases,
ut C44 increases. This is confirmed by the previous study in which
he elastic constants were calculated for different kinds of off-
toichiometric L21-Ni2MnGa [21]. The values for the bulk modulus
how little variation with respect to structures.

The elastic constants shown in Table 2 are for the Ni2MnGa
ingle crystals. In the applications, single crystal properties do
ot show the mechanical properties at the larger scale. Moreover,
hen the single crystal samples are not produced experimen-

ally, polycrystalline samples are used to determine the elastic
oduli. Hence, the individual elastic constants Cij cannot be mea-

ured. Instead, bulk modulus B and shear modulus G are obtained.
ence, we consider the calculation of polycrystalline aggregates
f Ni2MnGa from the theoretical single crystal properties. There
re two approximation methods to derive the isotropic elastic
oduli for polycrystalline single-phase materials by averaging the

nisotropic single crystal elastic properties over all possible ori-
ntations of crystallites. They are the Voigt and Reuss methods
epresenting the upper and lower bounds, respectively, to the
sotropic elastic modulus [28–30]. According to the Voigt approx-
mation, assuming uniform strain through the sample the shear

odulus (GV) in the cubic system is given by the following equa-
ions:

V = C11 − C12 + 3C44

5
. (21)
Averaging according to Reuss method assuming uniform stress
n the polycrystalline aggregate leads to

R = 5
4(S11 − S12) + 3S44

. (22)
and Compounds 508 (2010) 177–183 181

The bulk modulus B is the same in both the Voigt and Reuss aver-
ages in the cubic system and it is given by the following equation:

B = BV = BR = C11 + 2C12

3
. (23)

Hill [31] has discovered that the arithmetic average of the Voigt
and the Reuss bounds, called as Voigt–Reuss–Hill (VRH) aver-
age, represents the best estimation of the isotropic elastic moduli.
Using VRH average, the shear and bulk modulus are taken as
G = 1/2(GV + GR) and B = 1/2(BV + BR), respectively.

For the tetragonal NM phase of Ni2MnGa, the isotropic averaged
shear modulus is bounded from above by the Voigt approximation:

BV = 1
9

(2C11 + 2C12 + 4C13 + C33) (24)

and from below by the Reuss approximation;

BR = 1
2(S11 + S12) + S33 + 4S13

. (25)

Correspondingly, the Voigt and Reuss shear modulus of poly-
crystalline NM tetragonal phase are given by:

GV = 1
15

(2C11 − C12 − 2C13 + C33 + 6C44 + 3C66) (26)

and

GR = 15
(8S11 − 4S12 − 8S13 + 4S33 + 6S44 + 3S66)

, (27)

respectively.
Analogous expressions hold for the orthorhombic structure of

5M modulation. Bulk modulus is bounded from above by:

BV = 1
9

(C11 + C12 + C33 + 2(C12 + C13 + C23)) , (28)

and below by

BR = 1
S11 + S22 + S33 + 2(S12 + S13 + S23)

. (29)

The Voigt shear modulus and Reuss shear modulus are defined
as:

GV = 1
15

(C11 + C22 + C33 − C12 − C13

−C23 + 3C44 + 3C55 + 3C66), (30)

and

GR = 15
4(S11 + S22 + S33) − 4(S12 + S13 + S23) + 3(S44 + S55 + S66)

, (31)

respectively.
From the results of the elastic stiffness (Cij) and compliance con-

stants (Sij) given in Table 2, the elastic moduli of polycrystalline
Ni2MnGa in the three structures of interest in this study are deter-
mined by using the Voigt–Reuss–Hill averaging scheme given by
the Eqs. (21)–(31). The results are listed in Table 3. The values of
Voigt and Reuss bulk modulus calculated are nearly the same. How-
ever, the difference between two values of shear modulus is rather
large, so we quote as one-half of the difference between the bounds.
From Tables 2 and 3, we can see that the isotropic bulk modulus
calculated from the elastic constants for the orthorhombic struc-
ture (Table 3) has nearly the same value as the single crystal bulk
modulus obtained from applying hydrostatic pressure to the crys-
tal (Table 2). As expected, because the elastic constants of cubic
and tetragonal phases are obtained by using distortion matrix giv-

ing the expression for the bulk modulus, we get the same values
of bulk modulus for two methods (Tables 2 and 3). The ratio of
bulk to shear modulus of polycrystalline phases (B/G) proposed by
Pugh [32] provides the information about the ductility of the mate-
rial. A high (B/G) value is associated with the better ductility, while
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Table 3
The isotropic bulk modulus B (GPa) and shear modulus G (GPa) for polycrystalline Ni2MnGa from the single crystal elastic constants using Voigt, Reuss and Hill’s approxima-
tions. The Young’s modulus E (GPa) and the Poisson’s ratio � are predicted from Hill’s approximation, along with the available experiments.

Phase BV BR B GV GR G B/G E �

Austenite 155.6 155.7 155.7 66.4 12.8 39.6 ± 26.8 3.93 109 0.383
107.9c 0.3a,b

0.38c

Martensite NM 158.0 157.8 157.9 73.8 53.8 63.6 ± 10.0 2.48 168 0.322

Martensite 5M 151.8 151.7 151.8 68.7 38.7 53.7 ± 15.0 2.82 144 0.342

a
e
1
2
N
fi
t
r
w
t
f

E

a

�

P
s
m
l
m
t
s
e
s
a
m

m
D
a
s
o
p
d
t
s
l

�

w
t
a
v
[

v

Table 4
The longitudinal vL (m/s), transverse vT (m/s) and average sound velocity vM (m/s)
calculated from polycrystalline elastic modulus and Debye temperature �D (K)
obtained from average sound velocity for Ni2MnGa alloy in the austenitic and
martensitic structures, along with the available experiments.

vL vT vM �D

Austenite 5165 2251 2542 323
261a

Martensite NM 5572 2853 3196 406
345a

Martensite 5M 5346 2622 2944 374
a Taken from [33].
b Taken from [34].
c Taken from [35].

low value represents more brittleness. The critical value differ-
ntiating the ductile material from the brittle material is about
.75. Estimated from our calculations, the value of B/G is 3.93,
.48 and 2.82 for cubic, tetragonal and orthorhombic structures of
i2MnGa, respectively. Therefore, Ni2MnGa material can be classi-
ed as ductile material. However, these values are insufficient for
he applications of MSM technology requiring more ductile mate-
ial. We also obtained the Young’s modulus E and Poisson ratio �
hich are the parameters concerned with the shear strength and

he hardness of the material. They are related to B and G by the
ollowing equations:

= 9BG

3B + G
(32)

nd

= 3B − E

6B
. (33)

Listed also in Table 3 are the results for Young’s modulus and
oisson’s ratio of Ni2MnGa in three structures. Poisson’s ratio mea-
ures the stability of a crystal against shear strain, while Young’s
odulus measures the stiffness of an isotropic elastic material to

inear strain. The higher value of Young’s modulus calculated for
artensitic structures indicates that the ferromagnetic Ni2MnGa in

he austenitic phase is less hardness material than in the marten-
itic structure. On the other hand, the Poisson ratio decreases, as
xpected, when this stoichiometric material goes into phase tran-
ition from austenite to martensite. The results of Young’s modulus
nd Poisson’s ratio calculated for cubic Ni2MnGa are in good agree-
ent with the experimental results (see Table 3) [33–35].
After we have calculated elastic constants of austenitic and

artensitic structures, we are also interested in the variations of
ebye temperature with respect to structure. Debye temperature is
n important physical property when concerning elastic constants,
pecific heat and melting temperature. At low temperature, due to
nly the contribution of acoustic vibrational modes, the Debye tem-
erature predicted from elastic constants is consistent with that
etermined from specific heat measurements. For low tempera-
ures, we have estimated the Debye temperatures (�D) of Ni2MnGa
tructures from the averaged sound velocity, vm, by using the fol-
owing relation [36]:

D = h

k

[
3n

4�

(
NA	

M

)]1/3
vm, (34)

here h is the Plank’s constant, k is the Boltzman’s constant, NA is
he Avogadro’s number, 	 is the density, M is the molecular weight
nd n is the number of atoms in the molecules. The averaged sound

elocity vm is approximately predicted by the following equation
37]:

m =
[

1
3

(
2

vt
3

+ 1
vl

3

)]−1/3

, (35)
278a

319a

a Taken from [17].

where vl and vt are the longitudinal and transverse elastic wave
velocities of the isotropic material given by the following equations
[38]:

vl =
(

3B + 4G

3	

)1/2

and vt =
[

G

	

]1/2

, (36)

respectively. Here B and G are the polycrystalline bulk modulus and
shear modulus, respectively.

The wave velocities and Debye temperatures calculated for
Ni2MnGa in the austenitic and martensitic structures are given in
Table 4. As seen from the table, Debye temperature for austenitic
phase is smaller than that for martensitic phase, as confirmed by the
experiments which show that specific heat CP for austenite is larger
than for martensite [38,39]. Moreover, an increase of Debye tem-
perature is shown when the 5M–NM transformation happens. This
behavior is in agreement with the low temperature specific heat
measurements [17]. The values for Debye temperatures deviate
from the experimental values [17] at most 23%.

4. Conclusion

The variation of anisotropic elastic constants upon phase trans-
formations of Ni2MnGa is investigated by first-principles DFT
method. The main results can be given as the following:

• The single crystal elastic and the corresponding compliance
constants are predicted by straining the cubic L21 austenitic,
tetragonal NM and 5M modulated martensitic structures. The
results for the elastic constants of parent phase are in good agree-
ment with those of available experiments and other theoretical
calculations. Those for 5M martensitic structure are calculated
for the first time in this study. Our results for elastic constants,

which obey the stability conditions, show that the austenitic and
martensitic structures are mechanically stable against the defor-
mations applied.

• Considerably small value for the tetragonal shear constant, C′

of austenitic phase indicates the ease of the phase transition
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into martensitic phase. The tetragonal shear constant C′ sharply
increases when the phase transition from austenite to marten-
site occurs. On the other hand, C′ decreases as 5M transform to
NM phase (through 7M structure). In contrast, the pure shear
constant C44 shows an increase upon phase transitions. The pure
shear constant, C66, for 5M martensite is 15 GPa, though larger
compared to austenite C′ (5.5 GPa) value, still smaller than the
C66 value (55 GPa) for NM martensite. This may thermodynami-
cally drive the transformation to final NM martensite through 7M
martensitic phase. The calculated values of Young’s modulus and
Poisson’s ratio indicate that the martensitic structure is harder
than the austenitic structure.
The Debye temperatures for Ni2MnGa in the different structures
are obtained by using the average sound velocity. The trend of
Debye temperature as a function of e/a (phase transformation
from austenite to 5M and 5M to NM) is consistent with the behav-
ior of the experiment.

In summary, we have computed the mechanical properties of
i2MnGa in the cubic, NM and 5M structures relevant for its tech-
ological applications. The results for 7M modulation are not given

n this work due to large computational requirements. In the future,
he structural, mechanical and electronic properties of 7M phase
ill be investigated.
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